Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

نویسندگان

  • Paulina Jaramillo
  • W Michael Griffin
  • H Scott Matthews
چکیده

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Life Cycle Greenhouse Gas Emissions from Electricity Generation: A Comparative Analysis of Australian Energy Sources

Electricity generation is one of the major contributors to global greenhouse gas emissions. Transitioning the World’s energy economy to a lower carbon future will require significant investment in a variety of cleaner technologies, including renewables and nuclear power. In the short term, improving the efficiency of fossil fuel combustion in energy generation can provide an important contribut...

متن کامل

Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by dem...

متن کامل

The long-term life cycle private and external costs of high coal usage in the US

Using four times as much coal in 2050 for electricity production need not degrade air quality or increase greenhouse gas emissions. Current SOx and NOx emissions from the power sector could be reduced from 12 to less than 1 and from 5 to 2 million tons annually, respectively, using advanced technology. While direct CO2 emissions from new power plants could be reduced by over 87%, life cycle emi...

متن کامل

Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada.

The use of coal is responsible for (1)/(5) of global greenhouse gas (GHG) emissions. Substitution of coal with biomass fuels is one of a limited set of near-term options to significantly reduce these emissions. We investigate, on a life cycle basis, 100% wood pellet firing and cofiring with coal in two coal generating stations (GS) in Ontario, Canada. GHG and criteria air pollutant emissions ar...

متن کامل

Parametric Assessment of a Novel Geothermal Multi-Generation Equipped with Dual-Organic Rankine Liquefied Natural Gas Regasification Cycle Using Advanced Exergy and Exergoeconomic-Based Analyses

This research is concerned with the design and analysis of a geothermal based multi-generation system by applying both conventional and advanced exergy and exergoeconomic concepts. The proposed energy system consists of a dual-organic Rankine cycle (ORC) to vaporize liquefied natural gas (LNG) and produce electricity. A proton exchange membrane(PEM) electrolyzer is employed to produce hydrogen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 41 17  شماره 

صفحات  -

تاریخ انتشار 2007